Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Med Genet A ; : e63566, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38357848

RESUMO

PRKACA-related, atrial defects-polydactyly-multiple congenital malformation syndrome is a recently described skeletal ciliopathy, which is caused by disease-causing variants in PRKACA. The primary phenotypic description includes atrial septal defects, and limb anomalies including polydactyly and short limbs. To date, only four molecularly proven patients have been reported in the literature with a recurrent variant, c.409G>A p.Gly137Arg in PRKACA. In this study, we report the fifth affected individual with the same variant and review the clinical features and radiographic findings of this rare syndrome.

2.
Am J Med Genet A ; 194(3): e63422, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37876363

RESUMO

CHST3-related chondrodysplasia with congenital joint dislocations (CDCJD, #MIM 143095), is a rare genetic skeletal disorder caused by biallelic loss of function variants in CHST3. CHST3 is critical for the sulfation of chondroitin sulfate. This study delineates the clinical presentation of nine individuals featuring the key symptoms of CDCJD; congenital joint (knee and elbow) dislocations, short trunk short stature progressive vertebral anomalies, and metacarpal shortening. Additional manifestations include irregular distal femoral epiphysis, supernumerary carpal ossification centers, bifid humerus, club foot, and cardiac abnormalities. Sanger sequencing was carried out to investigate molecular etiology in eight patients and exome sequencing in one. Genetic testing revealed five homozygous variants in CHST3 (four were novel and one was previously reported). All these variants are located on sulfotransferase domain of CHST3 protein and were classified as pathogenic/ likely pathogenic. We thus report on nine individuals with CHST3-related chondrodysplasia with congenital joint dislocations from India and suggest monitoring the health of cardiac valves in this condition.


Assuntos
Nanismo , Luxações Articulares , Anormalidades Musculoesqueléticas , Osteocondrodisplasias , Humanos , Luxações Articulares/diagnóstico , Luxações Articulares/genética , Mutação , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Sulfotransferases/genética
3.
NPJ Genom Med ; 8(1): 39, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993442

RESUMO

Spondyloepimetaphyseal dysplasia with severe short stature, RPL13-related (SEMD-RPL13), MIM#618728), is a rare autosomal dominant disorder characterized by short stature and skeletal changes such as mild spondylar and epimetaphyseal dysplasia affecting primarily the lower limbs. The genetic cause was first reported in 2019 by Le Caignec et al., and six disease-causing variants in the gene coding for a ribosomal protein, RPL13 (NM_000977.3) have been identified to date. This study presents clinical and radiographic data from 12 affected individuals aged 2-64 years from seven unrelated families, showing highly variable manifestations. The affected individuals showed a range from mild to severe short stature, retaining the same radiographic pattern of spondylar- and epi-metaphyseal dysplasia, but with varying severity of the hip and knee deformities. Two new missense variants, c.548 G>A, p.(Arg183His) and c.569 G>T, p.(Arg190Leu), and a previously known splice variant c.477+1G>A were identified, confirming mutational clustering in a highly specific RNA binding motif. Structural analysis and interpretation of the variants' impact on the protein suggests that disruption of extra-ribosomal functions of the protein through binding of mRNA may play a role in the skeletal phenotype of SEMD-RPL13. In addition, we present gonadal and somatic mosaicism for the condition.

4.
Indian J Pediatr ; 90(12): 1182-1190, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36692815

RESUMO

OBJECTIVE: To understand the phenotypic and genotypic spectrum of genetic forms of rickets in 10 families. METHODS: Detailed clinical, radiographic, and biochemical evaluation of 10 families with phenotypes suggestive of a genetic cause of rickets was performed. Molecular testing using exome sequencing aided in the diagnosis of six different forms of known genetic causes. RESULTS: Eleven disease-causing variants including five previously reported variants (CYP27B1:c.1319_1325dup, p.(Phe443Profs*24), VDR:c.1171C>T, p.(Arg391Cys), PHEX: c.1586_1586+1del, PHEX: c.1482+5G>C, PHEX: c.58C>T, p.(Arg20*)) and six novel variants (CYP27B1:c.974C>T, p.(Thr325Met), CYP27B1: c.1376G>A, p.(Arg459His), CYP2R1: c.595C>T, p.(Arg199*), CYP2R1:c.1330G>C, p.(Gly444Arg),SLC34A3:c.1336-11_1336-1del, SLC2A2: c.589G>C, p.(Val197Leu)) in the genes known to cause monogenic rickets were identified. CONCLUSION: The authors hereby report a case series of individuals from India with a molecular diagnosis of rickets and provide the literature review which would help in enhancing the clinical and molecular profile for rapid and differential diagnosis of rickets.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Humanos , Raquitismo Hipofosfatêmico Familiar/diagnóstico , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Sequenciamento do Exoma , Genótipo , Fenótipo , Mutação
5.
Hum Mutat ; 43(12): 2116-2129, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36150098

RESUMO

Spondylo-epi-metaphyseal dysplasias with joint laxity, type 3 (SEMDJL3) is a genetic skeletal disorder characterized by multiple joint dislocations, caused by biallelic pathogenic variants in the EXOC6B gene. Only four individuals from two families have been reported to have this condition to date. The molecular pathogenesis related to primary ciliogenesis has not been enumerated in subjects with SEMDJL3. In this study, we report two additional affected individuals from unrelated families with biallelic pathogenic variants, c.2122+15447_2197-59588del and c.401T>G in EXOC6B identified by exome sequencing. One of the affected individuals had an intellectual disability and central nervous system anomalies, including hydrocephalus, hypoplastic mesencephalon, and thin corpus callosum. Using the fibroblast cell lines, we demonstrate the primary evidence for the abrogation of exocytosis in an individual with SEMDLJ3 leading to impaired primary ciliogenesis. Osteogenesis differentiation and pathways related to the extracellular matrix were also found to be reduced. Additionally, we provide a review of the clinical and molecular profile of all the mutation-proven patients reported hitherto, thereby further characterizing SEMDJL3. SEMDJL3 with biallelic pathogenic variants in EXOC6B might represent yet another ciliopathy with central nervous system involvement and joint dislocations.


Assuntos
Luxações Articulares , Instabilidade Articular , Osteocondrodisplasias , Humanos , Instabilidade Articular/genética , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Mutação , Proteínas de Ligação ao GTP/genética
6.
Eur J Med Genet ; 65(6): 104521, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35568358

RESUMO

Steel syndrome (MIM# 615155) is an autosomal recessive skeletal disorder, characterized by dislocations of the hips and radial heads, carpal coalition, short stature, facial dysmorphism, and scoliosis. Until date 47 patients have been reported. However, disease causing variants have been identified only in twenty Puerto Rican and nine non-Puerto Rican families. Here we report two monozygotic twins and a boy from two families with novel missense variants, c.295G > A p.(Ala99 Thr), c.3056C > A p.(Pro1019His) and c.2521G > A p.(Gly841Arg) in COL27A1. We describe for the first time, cleft palate and delayed carpal bone ossification as features of Steel syndrome. We reviewed clinical features in all mutation-proven Steel syndrome patients. Short stature and dislocation/subluxation of hip joint are consistently observed. Other features include dislocated radial heads, scoliosis, lordosis, carpal coalition, facial dysmorphism, hearing loss, bilateral fifth finger clinodactyly, knee deformities and developmental delay. Seven missense variants and eight null variants are reported in COL27A1 until date. We also looked into the genotype-phenotype correlation in Puerto Rican and non-Puerto Rican patients.


Assuntos
Luxações Articulares , Escoliose , Colágenos Fibrilares/genética , Humanos , Mutação , Fenótipo , Escoliose/diagnóstico por imagem , Escoliose/genética , Gêmeos Monozigóticos/genética
7.
Am J Med Genet A ; 188(3): 751-759, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34750995

RESUMO

Pseudoachondroplasia (PSACH) is an autosomal dominant disorder characterized by rhizomelic short-limbed skeletal dysplasia. The primary clinical and radiographic features include disproportionate dwarfism, joint laxity and hyperextensibility, exaggerated lumbar lordosis, and late ossification of the epiphyses. Identification of disease-causing variants in heterozygous state in COMP establishes the molecular diagnosis of PSACH. We examined 11 families with clinical features suggestive of PSACH. In nine families, we used Sanger sequencing of exons 8-19 of COMP (NM_000095.2) and in two families exome sequencing was used for confirming the diagnosis. We identified 10 de novo variants, including five known variants (c.925G>A, c.976G>A, c.1201G>T, c.1417_1419del, and c.1511G>A) and five variants (c.874T>C, c.1201G>C, c.1309G>A, c.1416_1421delCGACAA, and c.1445A>T) which are not reported outside Indian ethnicity. We hereby report the largest series of individuals with molecular diagnosis of PSACH from India and reiterate the well-known genotype-phenotype corelation in PSACH.


Assuntos
Acondroplasia , Acondroplasia/diagnóstico , Acondroplasia/genética , Proteína de Matriz Oligomérica de Cartilagem/genética , Proteínas da Matriz Extracelular/genética , Genótipo , Humanos , Proteínas Matrilinas/genética , Mutação , Fenótipo
9.
Am J Med Genet A ; 185(2): 614-616, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33135300

RESUMO

3-M syndrome is a rare autosomal recessive disorder, characterized by short stature, characteristic facies and absence of microcephaly and intellectual disability. 3-M syndrome 2 (MIM# 612921) is caused by biallelic disease causing variants in OBSL1. In this study, we identified two probands from two families with homozygous, c.1534 + 5G > T and compound heterozygous variants, c.35dup and c.1273dup in OBSL1, respectively. We herein highlight the clinical and molecular findings of the first reported cases from Indian ethnicity.


Assuntos
Proteínas do Citoesqueleto/genética , Nanismo/genética , Deficiência Intelectual/genética , Microcefalia/genética , Hipotonia Muscular/genética , Criança , Pré-Escolar , Nanismo/complicações , Nanismo/diagnóstico por imagem , Nanismo/patologia , Facies , Feminino , Predisposição Genética para Doença , Homozigoto , Humanos , Índia/epidemiologia , Deficiência Intelectual/complicações , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/patologia , Masculino , Microcefalia/complicações , Microcefalia/diagnóstico por imagem , Microcefalia/patologia , Hipotonia Muscular/complicações , Hipotonia Muscular/diagnóstico por imagem , Hipotonia Muscular/patologia , Mutação/genética , Linhagem , Fenótipo
10.
Clin Dysmorphol ; 29(3): 123-126, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32282352

RESUMO

15-Hydroxyprostaglandin dehydrogenase is NAD-dependent catalytic enzyme involved in prostaglandin biosynthesis pathway encoded by HPGD. The pathogenic variations in HPGD cause primary hypertrophic osteoarthropathy (PHO). The objective of the present study is to identify the genetic basis in patients with digital clubbing due to PHO. We performed detailed clinical and radiographic evaluation and exome sequencing in patients from three unrelated Indian families with PHO. Exome sequencing revealed two novel, c.34G>A (p.Gly12Ser) and c.313C>T (p.Gln105*) and a known variant, c.418G>C (p.Ala140Pro) in HPGD. Herein, we add three Indian families to HPGD mutation spectrum and review the literature on variants in this gene.


Assuntos
Pé Torto Equinovaro/genética , Hidroxiprostaglandina Desidrogenases/genética , Osteoartropatia Hipertrófica Primária/genética , Adulto , Povo Asiático , Criança , Pré-Escolar , Pé Torto Equinovaro/fisiopatologia , Família , Feminino , Humanos , Hidroxiprostaglandina Desidrogenases/metabolismo , Índia , Masculino , Mutação/genética , Mutação de Sentido Incorreto/genética , Osteoartropatia Hipertrófica Primária/fisiopatologia , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...